

Amphibians April 2016

What's so special about amphibians?

- Life Cycle: Double life
- Physical Characteristics
 - Ectothermic
 - Eggs
 - Skin
- Three orders of amphibians
 - Order Gymnophiona: Caecilians
 - Order Anura: Frogs and Toads
 - Order Caudata: Newts and Salamanders
- Amphibians of Washington
- Role in ecosystems
- Indicators of ecosystem health
- What you can do!

Red-eyed treefrog (Agalychnis callidryas)

Rough-skinned newt (Taricha granulosa)

Amphibian Life Cycle

"amphi" + "bios"

both + life

Two double lives:

- 1. aquatic and terrestrial life stages
- 2. larval and adult body forms

Oregon spotted frog larva gills (tadpole)

Pacific treefrog (Pseudacris regilla)

Rough-skinned newt (Taricha granulosa)

Axolotl salamander (Ambystoma mexicanum)

"Alternative lifestyles"

Fully terrestrial lifestyle

Oregon slender salamander (Batrachoseps wrighti)

Fully aquatic lifestyle

Pacific giant salamander (Dicamptodon ensatus)

Ectothermic

- often called "cold-blooded"
- body temperature determined by external ("ecto") environment
- can regulate body temperature by:
 - movement (into sun or shade, body in relation to sun)
 - evaporative cooling (if plenty of water is available) skin color changes

Long-toed salamander (Ambystoma macrodactylum)

Amphibian Eggs

- Similar in structure to fish eggs
- No hard shell or membrane
- Gelatinous covering, permeable to gases and liquids
- Usually laid in water or moist places (prone to drying out)
- External or internal fertilization

egg (ovum)

jelly layers

Blue poison dart frogs (Dendrobates azureus)

Amphibian Skin

- Only class of vertebrates with no protective skin covering (scales, feathers, hair/fur)
- Permeable skin (liquids and gases can pass across)
- Shed skin (but often consume sheds)
- Many skin glands (some exude toxic compounds)

Rough-skinned newt (Taricha granulosa)

Tomato frog (Dyscophus guineti)

Order Gymnophiona: Caecilians

- Legless, with rings around body (resembling earthworm segments)
- 5 inches 4.5 feet
- Live underground, some species are aquatic
- Do not rely on eyesight
- Tentacles on either side of head used as smell and touch receptors
- Live in tropical regions
- Carnivorous

Mexican burrowing caecilian (Dermophis mexicanus)

Order Anura: Frogs & Toads

Green and black poison dart frog (Dendrobates auratus)

Great Basin spadefoot toad (Scaphiopus intermontanus)

Frog and Toad Characteristics

- Larvae (tadpoles) are legless but have tails; adults have four legs but are tailless
- Larvae are herbivorous; adults are carnivorous
- Hind legs adapted for hopping (toads) or leaping (frogs)
- Generally, frogs have smooth skin and live in or near water; toads have rough, warty skin and live in drier areas

Waxy monkey treefrog (Phyllomedusa sauvagii)

Western toad (Bufo boreas)

Order Caudata: Newts and Salamanders

- Tail in all life stages
- Carnivorous as larvae and adults
- Two pairs of limbs of approximately equal size (exception: the sirenidae family, which lack hind limbs)

Rough-skinned newt (Taricha granulosa)

Oregon ensatina

(Ensatina eschscholtzii oregonensis)

Amphibians of Florida

Barking Green Treefrog (Hyla gratiosa)

American Green Treefrog (Hyla Cinerea)

Amphibians of Florida

Southern Leopard Frog (Lithobates sphenocephalus)

Oak Toad (Anaxyrus quercicus)

Amphibians of Florida

Eastern Newt (Notophthalmus Viridescens)

Marbled Salamander (Ambystoma Opacum)

Eastern Tiger Salamander
Ambystoma Tigrinum

Dwarf Salamander (Eurycea Quadridigitata)

Amphibians as indicators of ecosystem health

- aquatic and terrestrial life stages
- permeable skin and eggs
- susceptible to cold and desiccation (drying out)
- food habits (tadpoles feed on algae and plants, other amphibians are carnivorous)
 - chemicals can accumulate at the surface and on the bottom of wetlands
 - toxins can "biomagnify" as they are passed up the food chain in the fat tissue of animals

Amphibian Population Decline

- Habitat destruction (of wetlands and forests) has been a major factor in the decline of many species. However, worldwide declines have also been documented in populations inhabiting areas not directly affected by human activity.
- Not one factor has been singled out as "the" cause of recent declines in amphibian populations. However, a disease caused by a chytrid fungus has been implicated in numerous declines across the globe.

Contributing factors include:

- introduced species
- global climate change (including increased UV-B radiation)
- diseases and pathogens (esp. chytrid fungus)
- environmental toxins, such as pesticides

Some of these factors also result in malformations of amphibians.

What you can do!

Opportunities for ensuring the survival of amphibians:

- Participate in wetlands habitat restoration
- Make schoolyards or backyards "frog friendly"
- Participate in an amphibian citizen science program
- Be a responsible pet owner
- Minimize pollution
- Raise amphibian awareness
- Raise funds for amphibian conservation projects

Florida Cricket Frog (Acris Gryllus)

Bronze frog (Rana Clamitans)

WWW.KISSAGATOR.COM